111 research outputs found

    Evaluation of Near-Surface Air Temperature from Reanalysis over the United States and Ukraine: Application to Winter Wheat Yield Forecasting

    Get PDF
    In this work we evaluate the near-surface air temperature datasets from the ERA-Interim, JRA55, MERRA2, NCEP1, and NCEP2 reanalysis projects. Reanalysis data were first compared to observations from weather stations located on wheat areas of the United States and Ukraine, and then evaluated in the context of a winter wheat yield forecast model. Results from the comparison with weather station data showed that all datasets performed well (r2>0.95) and that more modern reanalysis such as ERAI had lower errors (RMSD ~ 0.9) than the older, lower resolution datasets like NCEP1 (RMSD ~ 2.4). We also analyze the impact of using surface air temperature data from different reanalysis products on the estimations made by a winter wheat yield forecast model. The forecast model uses information of the accumulated Growing Degree Day (GDD) during the growing season to estimate the peak NDVI signal. When the temperature data from the different reanalysis projects were used in the yield model to compute the accumulated GDD and forecast the winter wheat yield, the results showed smaller variations between obtained values, with differences in yield forecast error of around 2% in the most extreme case. These results suggest that the impact of temperature discrepancies between datasets in the yield forecast model get diminished as the values are accumulated through the growing season

    The surface temperatures of Earth: steps towards integrated understanding of variability and change

    Get PDF
    Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy

    Get PDF
    Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (ή18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations

    Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields

    Get PDF
    International audienceWe study the discrete logarithm problem at the boundary case between small and medium characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryptosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt the latter to the particular case where the extension degree is composite, and show how to lower the complexity by working in a shifted function field. All this study finally allows us to give precise values for the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough, there exist special characteristics that are as secure as general ones

    Challenges with Assessing the Impact of NFS Advances on the Security of Pairing-based Cryptography

    Get PDF
    In the past two years there have been several advances in Number Field Sieve (NFS) algorithms for computing discrete logarithms in finite fields Fpn\mathbb{F}_{p^n} where pp is prime and n>1n > 1 is a small integer. This article presents a concise overview of these algorithms and discusses some of the challenges with assessing their impact on keylengths for pairing-based cryptosystems

    Rerandomizable Signatures under Standard Assumption

    Get PDF
    The Camenisch-Lysyanskaya rerandomizable signature (CL-RRS) scheme is an important tool in the construction of privacy preserving protocols. One of the limitations of CL-RRS is that the signature size is linear in the number of messages to be signed. In 2016, Pointcheval-Sanders introduced a variant of rerandomizable signature (PS-RRS) scheme which removes the above limitation. However, the security of PS-RRS scheme was proved under an interactive assumption. In 2018, Pointcheval-Sanders improved this to give a reduction under a parameterized assumption. In 2012, Gerbush et al.\ introduced the dual-form signature technique to remove the dependency on interactive/parameterized assumption. They applied this technique on the CL-RRS scheme (for single message) and proved its unforgeability under static assumptions instead of the interactive assumption used in the original work but in the symmetric composite-order pairing setting. In this work, we realize a fully rerandomizable signature scheme in the prime order setting without random oracle based on the SXDH assumption. The signature structure is derived from Ghadafi\u27s structure-preserving signature. We first apply the dual-form signature technique to obtain a composite-order variant, called \texttt{RRSc}. A signature in \texttt{RRSc} consists of only two group elements and is thus independent of the message block length. The security of the proposed scheme is based on subgroup hiding assumptions. Then we use the dual pairing vector space framework to obtain a prime-order variant called \texttt{RRS} and prove its security under the SXDH assumption

    A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy

    Get PDF
    Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (ή18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations

    Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption

    Get PDF
    This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP’s as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products
    • 

    corecore